skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Magdis, G E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 7, 2026
  2. Context.One of the surprising early findings with JWST has been the discovery of a strong “roll-over” or a softening of the absorption edge of Lyαin a large number of galaxies atz≳ 6, in addition to systematic offsets from photometric redshift estimates and fundamental galaxy scaling relations. This has been interpreted as strong cumulative damped Lyαabsorption (DLA) wings from high column densities of neutral atomic hydrogen (H I), signifying major gas accretion events in the formation of these galaxies. Aims.To explore this new phenomenon systematically, we assembled the JWST/NIRSpec PRImordial gas Mass AssembLy (PRIMAL) legacy survey of 584 galaxies atz = 5.0 − 13.4, designed to study the physical properties and gas in and around galaxies during the reionization epoch. Methods.We characterized this benchmark sample in full and spectroscopically derived the galaxy redshifts, metallicities, star formation rates, and ultraviolet (UV) slopes. We defined a new diagnostic, the Lyαdamping parameterDLyα, to measure and quantify the net effect of Lyαemission strength, the H Ifraction in the intergalactic medium, or the local H Icolumn density for each source. The JWST-PRIMAL survey is based on the spectroscopic DAWN JWST Archive (DJA-Spec). We describe DJA-Spec in this paper, detailing the reduction methods, the post-processing steps, and basic analysis tools. All the software, reduced spectra, and spectroscopically derived quantities and catalogs are made publicly available in dedicated repositories. Results.We find that the fraction of galaxies showing strong integrated DLAs withNHI > 1021 cm−2only increases slightly from ≈60% atz ≈ 6 up to ≈65 − 90% atz > 8. Similarly, the prevalence and prominence of Lyαemission is found to increase with decreasing redshift, in qualitative agreement with previous observational results. Strong Lyαemitters (LAEs) are predominantly found to be associated with low-metallicity and UV faint galaxies. By contrast, strong DLAs are observed in galaxies with a variety of intrinsic physical properties, but predominantly at high redshifts and low metallicities. Conclusions.Our results indicate that strong DLAs likely reflect a particular early assembly phase of reionization-era galaxies, at which point they are largely dominated by pristine H Igas accretion. Atz = 8 − 10, this gas gradually cools and forms into stars that ionize their local surroundings, forming large ionized bubbles and producing strong observed Lyαemission atz < 8. 
    more » « less
  3. Abstract We investigate the fine-structure [Cii] line at 158μm as a molecular gas tracer by analyzing the relationship between molecular gas mass (Mmol) and [Cii] line luminosity (L[CII]) in 11,125z≃ 6 star-forming, main-sequence galaxies from thesimbasimulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [Cii] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01) log L [ C II ] log M mol relation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies atz≲ 6. We derive a median [Cii]-to-Mmolconversion factor ofα[CII]≃ 18M/L. This is lower than the average value of ≃30M/Lderived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [Cii] observations of low-mass galaxies. For our simulations, [Cii] is a better tracer of the molecular gas than COJ= 1–0, especially at the lowest metallicities, where much of the gas isCO-dark. We find thatL[CII]is more tightly correlated withMmolthan with star formation rate (SFR), and both the log L [ C II ] log M mol and log L [ C II ] log SFR relations arise from the Kennicutt–Schmidt relation. Our findings suggest thatL[CII]is a promising tracer of the molecular gas at the earliest cosmic epochs. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. We studied the molecular gas properties of AzTEC/C159, a star-forming disk galaxy at $z=4.567$. We secured $$^{12}$$CO molecular line detections for the $$J=2\to1$$ and $$J=5\to4$$ transitions using the Karl G. Jansky VLA and the NOEMA interferometer. The broad (FWHM$$\sim750\,{\rm km\,s}^{-1}$$) and tentative double-peaked profiles of both $$^{12}$$CO lines are consistent with an extended molecular gas reservoir, which is distributed in a rotating disk as previously revealed from [CII] 158$$\mu$$m line observations. Based on the $$^{12}$$CO(2$$\to$$1) emission line we derived $$L'_{\rm{CO}}=(3.4\pm0.6)\times10^{10}{\rm \,K\,km\,s}^{-1}{\rm \,pc}^{2}$$, that yields a molecular gas mass of $$M_{\rm H_2 }(\alpha_{\rm CO}/4.3)=(1.5\pm0.3)\times 10^{11}{\rm M}_\odot$$ and unveils a gas-rich system with $$\mu_{\rm gas}(\alpha_{\rm CO}/4.3)\equiv M_{\rm H_2}/M_\star=3.3\pm0.7$$. The extreme star formation efficiency (SFE) of AzTEC/C159, parametrized by the ratio $$L_{\rm{IR}}/L'_{\rm{CO}}=(216\pm80)\, {\rm L}_{\odot}{\rm \,(K\,km\,s}^{-1}{\rm \,pc}^{2})^{-1}$$, is comparable to merger-driven starbursts such as local ultra-luminous infrared galaxies (ULIRGs) and SMGs. Likewise, the $$^{12}$$CO(5$$\to$$4)/CO(2$$\to$$1) line brightness temperature ratio of $$r_{52}= 0.55\pm 0.15$$ is consistent with high excitation conditions, similar to that observed in SMGs. We constrained the value for the $$L'_{\text{CO}}-{\rm H}_2$$ mass conversion factor in AzTEC/C159, i.e. $$\alpha_{\text{CO}}=3.9^{+2.7}_{-1.3}{\rm \,M}_{\odot}{\rm \,K}^{-1}{\rm \,km}^{-1}{\rm \,s\,pc}^{-2}$$, that is consistent with a self-gravitating molecular gas distribution as observed in local star-forming disk galaxies. Cold gas streams from cosmological filaments might be fueling a gravitationally unstable gas-rich disk in AzTEC/C159, which breaks into giant clumps forming stars as efficiently as in merger-driven systems and generate high gas excitation. 
    more » « less